首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10963篇
  免费   1328篇
  国内免费   1480篇
化学   6087篇
晶体学   61篇
力学   623篇
综合类   51篇
数学   196篇
物理学   6753篇
  2024年   2篇
  2023年   183篇
  2022年   248篇
  2021年   269篇
  2020年   337篇
  2019年   233篇
  2018年   264篇
  2017年   404篇
  2016年   477篇
  2015年   402篇
  2014年   669篇
  2013年   856篇
  2012年   655篇
  2011年   819篇
  2010年   608篇
  2009年   859篇
  2008年   871篇
  2007年   850篇
  2006年   689篇
  2005年   626篇
  2004年   557篇
  2003年   478篇
  2002年   355篇
  2001年   337篇
  2000年   286篇
  1999年   219篇
  1998年   225篇
  1997年   230篇
  1996年   157篇
  1995年   136篇
  1994年   94篇
  1993年   69篇
  1992年   80篇
  1991年   55篇
  1990年   36篇
  1989年   32篇
  1988年   21篇
  1987年   17篇
  1986年   16篇
  1985年   12篇
  1984年   6篇
  1983年   4篇
  1982年   7篇
  1981年   7篇
  1980年   2篇
  1979年   2篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
Here, we report multiwalled carbon nanotubes (MWCNTs) functionalized with γ-cyclodextrins (γCD) as a novel electrochemical strategy for Rutin determination, showing superior performance than β-cyclodextrins (βCD) modified MWCNTs, suggesting an adequate environment for host-guest interactions. Under optimized conditions, the sensor showed a linear range of 39–975 nmol L−1 and a limit of detection of 7 nmol L−1. When tested with quercetin, catechin, and caffeine, the platform presented high selectivity with an interference response <10 %. The method was employed to quantify Rutin in spiked pharmaceutical and herbal extracts, providing recovery of 93–98.4 %. Also, HPLC-PDA confirmed the method‘s accuracy.  相似文献   
52.
Biochar (BC) and ferrihydrite (Fh) were used together in activation of H2O2 for removal of sulfamethazine (SMZ), a refractory antibiotic pollutant. The results show a complementary effect between biochar and ferrihydrite on activation of H2O2, namely biochar accelerated Fe(Ⅲ)/Fe(Ⅱ) cycle through electron donation/transfer, while ferrihydrite enhanced the yield of OH through a sustainable release of dissolved Fe. Thus several times more OH was produced in the co-activated system (BC + Fh/H2O2) than either in the ferrihydrite-catalyzed Fenton-like system (Fh/H2O2) or in the biochar-activated system (BC/H2O2). Consequently, a more efficient oxidation of SMZ was observed in BC + Fh/H2O2, in which the reaction rate constant (kobs) is 30.7 times in Fh/H2O2 and 6.08 times in BC/H2O2, respectively. This research provides a simple and sustainable strategy for enhancing the efficiency of Fenton-like oxidation of pollutants.  相似文献   
53.
At the core of carbon monoxide dehydrogenase (CODH) active site two metal ions together with hydrogen bonding scheme from amino acids orchestrate the interconversion between CO2 and CO. We have designed a molecular catalyst implementing a bimetallic iron complex with an embarked second coordination sphere with multi-point hydrogen-bonding interactions. We found that, when immobilized on carbon paper electrode, the dinuclear catalyst enhances up to four fold the heterogeneous CO2 reduction to CO in water with an improved selectivity and stability compared to the mononuclear analogue. Interestingly, quasi-identical catalytic performances are obtained when one of the two iron centers was replaced by a redox inactive Zn metal, questioning the cooperative action of the two metals. Snapshots of X-ray structures indicate that the two metalloporphyrin units tethered by a urea group is a good compromise between rigidity and flexibility to accommodate CO2 capture, activation, and reduction.  相似文献   
54.
Targeted construction of carbon defects near the N dopants is an intriguing but challenging way to boost the electrocatalytic activity of N-doped carbon toward oxygen reduction reaction (ORR). Here, we report a novel site-specific etching strategy that features targeted anchoring of singlet oxygen (1O2) on the N-adjacent atoms to directionally construct topological carbon defects neighboring the N dopants in N-doped carbon (1O2−N/C). This 1O2−N/C exhibits the highest ORR half-wave potential of 0.915 VRHE among all the reported metal-free carbon catalysts. Pyridinic-N bonded with a carbon pentagon of the neighboring topological carbon defects is identified as the primary active configuration, rendering enhanced adsorption of O2, optimized adsorption energy of the ORR intermediates, and a significantly decreased total energy barrier for ORR. This 1O2-induced site-specific etching strategy is also applicable to different precursors, showing a tremendous potential for targeted construction of high-efficiency active sites in carbon-based materials.  相似文献   
55.
Bismuth-based materials have been recognized as promising catalysts for the electrocatalytic CO2 reduction reaction (ECO2RR). However, they show poor selectivity due to competing hydrogen evolution reaction (HER). In this study, we have developed an edge defect modulation strategy for Bi by coordinating the edge defects of bismuth (Bi) with sulfur, to promote ECO2RR selectivity and inhibit the competing HER. The prepared catalysts demonstrate excellent product selectivity, with a high HCOO Faraday efficiency of ≈95 % and an HCOO partial current of ≈250 mA cm−2 under alkaline electrolytes. Density function theory calculations reveal that sulfur tends to bind to the Bi edge defects, reducing the coordination-unsaturated Bi sites (*H adsorption sites), and regulating the charge states of neighboring Bi sites to improve *OCHO adsorption. This work deepens our understanding of ECO2RR mechanism on bismuth-based catalysts, guiding for the design of advanced ECO2RR catalysts.  相似文献   
56.
An understanding of the CO2 adsorption mechanisms on small-pore zeolites is of practical importance in the development of more efficient adsorbents for the separation of CO2 from N2 or CH4. Here we report that the CO2 isotherms at 25–75 °C on cesium-exchanged phillipsite zeolite with a Si/Al ratio of 2.5 (Cs-PHI-2.5) are characterized by a rectilinear step shape: limited uptake at low CO2 pressure (PCO2) is followed by highly cooperative uptake at a critical pressure, above which adsorption rapidly approaches capacity (2.0 mmol g−1). Structural analysis reveals that this isotherm behavior is attributed to the high concentration and large size of Cs+ ions in dehydrated Cs-PHI-2.5. This results in Cs+ cation crowding and subsequent dispersal at a critical loading of CO2, which allows the PHI framework to relax to its wide pore form and enables its pores to fill with CO2 over a very narrow range of PCO2. Such a highly cooperative phenomenon has not been observed for other zeolites.  相似文献   
57.
The electrical and mechanical properties of graphene-based materials can be tuned by the introduction of nanopores, which are sensitively related to the size, morphology, density, and location of nanopores. The synthesis of low-dimensional graphene nanostructures containing well-defined nonplanar nanopores has been challenging due to the intrinsic steric hindrance. Herein, we report the selective synthesis of one-dimensional (1D) graphene nanoribbons (GNRs) containing periodic nonplanar [14]annulene pores on Ag(111) and two-dimensional (2D) porous graphene nanosheet containing periodic nonplanar [30]annulene pores on Au(111), starting from a same precursor. The formation of distinct products on the two substrates originates from the different thermodynamics and kinetics of coupling reactions. The reaction mechanisms were confirmed by a series of control experiments, and the appropriate thermodynamic and kinetic parameters for optimizing the reaction pathways were proposed. In addition, the combined scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations revealed the electronic structures of porous graphene structures, demonstrating the impact of nonplanar pores on the π-conjugation of molecules.  相似文献   
58.
Borocarbonitride (BCN) materials are newly developed oxidative dehydrogenation catalysts that can efficiently convert alkanes to alkenes. However, BCN materials tend to form bulky B2O3 due to over-oxidation at the high reaction temperature, resulting in significant deactivation. Here, we report a series of super stable BCN nanosheets for the oxidative dehydrogenation of propane (ODHP) reaction. The catalytic performance of the BCN nanosheets can be easily regulated by changing the guanine dosage. The control experiment and structural characterization indicate that the introduction of a suitable amount of carbon could prevent the formation of excessive B2O3 from BCN materials and maintain the 2D skeleton at a high temperature of 520 °C. The best-performing catalyst BCN exhibits 81.9 % selectivity towards olefins with a stable propane conversion of 35.8 %, and the propene productivity reaches 16.2 mmol h−1 g−1, which is much better than hexagonal BN (h-BN) catalysts. Density functional theory calculation results show that the presence of dispersed rather than aggregated carbon atoms can significantly affect the electronic microenvironment of h-BN, thereby boosting the catalytic activity of BCN.  相似文献   
59.
Combustion is often difficult to spatially direct or tune associated kinetics—hence a run-away reaction. Coupling pyrolytic chemical transformation to mass transport and reaction rates (Damköhler number), however, we spatially directed ignition with concomitant switch from combustion to pyrolysis (low oxidant). A ‘surface-then-core’ order in ignition, with concomitant change in burning rate,is therefore established. Herein, alkysilanes grafted onto cellulose fibers are pyrolyzed into non-flammable SiO2 terminating surface ignition propagation, hence stalling flame propagating. Sustaining high temperatures, however, triggers ignition in the bulk of the fibers but under restricted gas flow (oxidant and/or waste) hence significantly low rate of ignition propagation and pyrolysis compared to open flame (Liñán's equation). This leads to inside-out thermal degradation and, with felicitous choice of conditions, formation of graphitic tubes. Given the temperature dependence, imbibing fibers with an exothermically oxidizing synthon (MnCl2) or a heat sink (KCl) abets or inhibits pyrolysis leading to tuneable wall thickness. We apply this approach to create magnetic, paramagnetic, or oxide containing carbon fibers. Given the surface sensitivity, we illustrate fabrication of nm- and μm-diameter tubes from appropriately sized fibers.  相似文献   
60.
To date, only a few noble metal oxides exhibit the required efficiency and stability as oxygen evolution reaction (OER) catalysts under the acidic, high-voltage conditions that exist during proton exchange membrane water electrolysis (PEMWE). The high cost and scarcity of these catalysts hinder the large-scale application of PEMWE. Here, we report a novel OER electrocatalyst for OER comprised of uniformly dispersed Ru clusters confined on boron carbon nitride (BCN) support. Compared to RuO2, our BCN-supported catalyst shows enhanced charge transfer. It displays a low overpotential of 164 mV at a current density of 10 mA cm−2, suggesting its excellent OER catalytic activity. This catalyst was able to operate continuously for over 12 h under acidic conditions, whereas RuO2 without any support fails in 1 h. Density functional theory (DFT) calculations confirm that the interaction between the N on BCN support and Ru clusters changes the adsorption capacity and reduces the OER energy barrier, which increases the electrocatalytic activity of Ru.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号